

KULLIYYAH OF ENGINEERING

END OF SEMESTER EXAMINATION SEMESTER I, 2016/2017 SESSION

Programme	: Engineering	Level of Study	: UG 2
Time	: 2:30 pm -5:30 pm	Date	: 23/05/2016
Duration	: 3 Hrs		
Course Code	: ECE 2133	Section(s)	: 1
Course Title	: Electronic Circuits		

This Question Paper Consists of 7 (Six) Printed Pages (Including Cover Page) with 5 (Five) Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- Total mark of this examination is **100**.
- This examination is worth **50 %** of the total course assessment.
- Answer ALL QUESTIONS.
- Only approved calculator with 'KoE approved' sticker is allowed (non-programmable and non-graphical).
- Marks assigned to each problem are listed in the margins.

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

All electronics gadgets are prohibited in the exam hall / venue. (e.g. mobile / smart phones, smart watches, and smart glasses)

Q.1 [20 marks]

(a) Draw the Bode plot (magnitude and phase) of the following transfer function. (marks 3+3)

$$T(s) = \frac{1}{150} \frac{(s+15)(s+400)}{s(s+250)}$$

- (b) Determine the magnitude and phase of the transfer function from the plots drawn in Q.1(a) at a frequency, s = 300 radian/sec. (marks 2+2)
- (c) A common emitter amplifier circuit as shown in Fig. 1(c) has $\beta = 90$ and $r_{\pi} = 1.5$ k Ω
 - i. Draw the small-signal AC equivalent circuit. (marks 2)ii. Determine the input and output resistances of the amplifier (marks 3+2)
 - iii. Calculate the corner frequencies (marks 3)

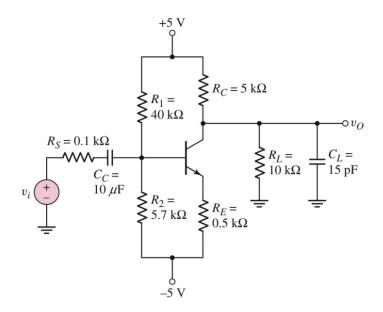


Fig. 1(c)

Q.2 [20 marks]

(a) Draw the simplified small-signal high-frequency equivalent circuit of Fig. 1(a).

(marks 2)

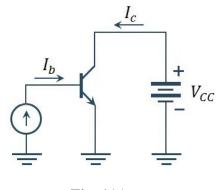


Fig. 1(a)

(b) Determine the transistor short-circuit beta frequency, f_{β} and cutoff frequency, f_T using the simplified small-signal high-frequency equivalent circuit of Fig. 1(a).

(marks 8)

- (c) A simplified small signal high-frequency transistor amplifier model is shown in Fig. 2(c). The transistor parameters are, $r_{\pi} = 1.5 \ k\Omega$, $\beta = 150$, $r_0 = 80 \ k\Omega$, $C_{\pi} = 20 \ pF$ and $C_{\pi} = 10 \ pF$. If the circuit parameters are, $R_S = 1.5 \ k\Omega$, $R_B = 15 \ k\Omega$, $R_C = 15 \ k\Omega$ and $R_C = 10 \ k\Omega$ then determine the followings:
 - i. The Miller capacitor value (marks 6)
 - ii. -3dB higher corner frequency (marks 4)

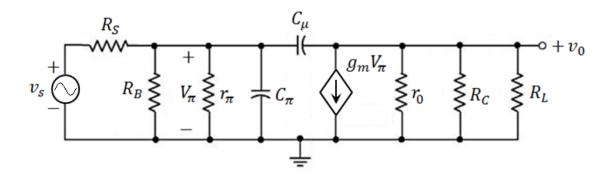
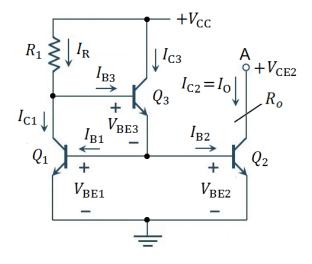


Fig. 2(c)


Q.3 [20 marks]

(a)

- i. Design a modified basic current source as shown in Fig. 3(a) to give an output resistance $R_0 = 45 M\Omega$. All the transistors are identical and their parameters are, $g_m = 60 mA/V$, $r_{\pi} = 2.5 k\Omega$, and $V_A = 150 V$ respectively. The circuit parameters are, $V_{CC} = 40 V$, $V_{BE1} = V_{BE2} = V_{BE3} = 0.7 V$ and $V_{CE2} = 25 V$ respectively.
 - (marks 3)

(marks 2.5)

ii. Determine the collector current ratio of the circuit, $\frac{I_{C2}}{I_{C1}}$. (marks 3)

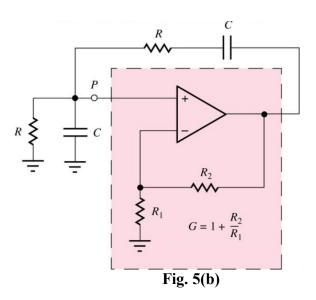
Fig. 3(a)

- (b) Deduce the following expressions step by step for MOSFET current source as shown in Fig. 3(b). Assuming all the MOSFETs are identical.
 - i. MOSFETs parameter ratio, K_{n3}/K_{n2} (marks 2.5)
 - ii. Output resistance, R_0

$$\begin{array}{c}
 I_{R} \downarrow + + V_{DD} \\
 M_{3} \downarrow + + V_{DS2} \\
 V_{DS3} - I_{D2} = I_{0} \downarrow R_{o} \\
 I_{D1} \downarrow M_{1} M_{2} + V_{DS2} \\
 V_{DS1} \downarrow + + V_{CS1} V_{CS2} \\
 - V_{SS} \\
 Fig. 3(b)
\end{array}$$

iii. Design an integrated MOSFET current source as shown in Fig. 3(b) for output current $I_0 = I_{D1} = I_{D2} = 10 \ \mu\text{A}$ and output resistance $R_0 = 30 \ \text{M}\Omega$. All the MOSFETs are identical and their threshold voltage $V_{t1} = V_{t2} = V_{t3} = 0.5$ V. Assume that the supply voltage, $V_{DD} = 30$ V, $V_{DS1} = 15$ V and $V_{GS1} = 10$ V. (marks 3+3+3)

Q.4 [20 marks]


- (a) What are the merits and demerits of the negative feedback amplifier? (marks 4)
- (b) Prove that gain sensitivity of an amplifier is improved with negative feedback. (marks 4)
- (c) The open loop gain of a voltage amplifier is changed from 1000 to 850 due to temperature effects. Design a negative feedback system to improve the gain stability 1.5% by determining the feedback factor β . (marks 4)
- (d) The feedback voltage, v_{fb} and the error voltage v_{ε} of a series-shunt amplifier are 1.5 V and 100 µV respectively. The close-loop voltage gain of the amplifier is, $A_{vf} = -300$ and the input and output resistances of the original amplifier are $R_i = 10 \text{ k}\Omega$ and $R_0 = 1.5 \text{ k}\Omega$ respectively.

i. Determine the open-loop gain and feedback factors of the circuit.	(marks 4)
ii. Determine the input and output resistances of the amplifier after feedback.	(marks 4)

Q.5 [20 marks]

- (a) What are the conditions for oscillation? (marks 2)
- (b) A wine bridge oscillator circuit as shown in Fig. 5(b), derive the equations
 - i. The loop gain of the circuit for sustaining oscillation (marks 7)
 - ii. Frequency of oscillation

(marks 7)

(c) Design a wine bridge oscillator for generating 1.5 kHz. Assume that the capacitor value is $0.22 \mu F.$ (marks 4)

USEFUL FORMULA

BJT	MOSFET
$i_{C} = I_{S} e^{v_{BE}/V_{T}} \cdot \left(1 + \frac{v_{CE}}{V_{A}}\right)$ $g_{m} = \frac{I_{CQ}}{V_{T}}$ $r_{\pi} = \frac{\beta V_{T}}{I_{CQ}}$ $r_{o} = \frac{V_{A}}{I_{CQ}}$ $V_{T} = 26 \text{ mV}$ $V_{BE}(on) = 0.7 \text{V}$	$I_{D} = \frac{1}{2} k'_{n} \left(\frac{W}{L} \right) (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$ $g_{m} = 2\sqrt{K_{n} I_{DQ}}$ $r_{o} = \frac{1}{\lambda I_{DQ}}$ $K_{n} = \frac{k'_{n}}{2} \left(\frac{W}{L} \right)$

END OF PAPER